Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).

Identifieur interne : 000117 ( Main/Exploration ); précédent : 000116; suivant : 000118

Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).

Auteurs : Hokuto Ohtsuka [Japon] ; Takafumi Shimasaki [Japon] ; Hirofumi Aiba [Japon]

Source :

RBID : pubmed:33064911

Abstract

So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini-review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP-dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin-dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.

DOI: 10.1111/mmi.14627
PubMed: 33064911


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).</title>
<author>
<name sortKey="Ohtsuka, Hokuto" sort="Ohtsuka, Hokuto" uniqKey="Ohtsuka H" first="Hokuto" last="Ohtsuka">Hokuto Ohtsuka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shimasaki, Takafumi" sort="Shimasaki, Takafumi" uniqKey="Shimasaki T" first="Takafumi" last="Shimasaki">Takafumi Shimasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aiba, Hirofumi" sort="Aiba, Hirofumi" uniqKey="Aiba H" first="Hirofumi" last="Aiba">Hirofumi Aiba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33064911</idno>
<idno type="pmid">33064911</idno>
<idno type="doi">10.1111/mmi.14627</idno>
<idno type="wicri:Area/Main/Corpus">000012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000012</idno>
<idno type="wicri:Area/Main/Curation">000012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000012</idno>
<idno type="wicri:Area/Main/Exploration">000012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).</title>
<author>
<name sortKey="Ohtsuka, Hokuto" sort="Ohtsuka, Hokuto" uniqKey="Ohtsuka H" first="Hokuto" last="Ohtsuka">Hokuto Ohtsuka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shimasaki, Takafumi" sort="Shimasaki, Takafumi" uniqKey="Shimasaki T" first="Takafumi" last="Shimasaki">Takafumi Shimasaki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aiba, Hirofumi" sort="Aiba, Hirofumi" uniqKey="Aiba H" first="Hirofumi" last="Aiba">Hirofumi Aiba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya</wicri:regionArea>
<wicri:noRegion>Nagoya</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular microbiology</title>
<idno type="eISSN">1365-2958</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini-review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP-dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin-dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33064911</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2958</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Molecular microbiology</Title>
<ISOAbbreviation>Mol Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/mmi.14627</ELocationID>
<Abstract>
<AbstractText>So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini-review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP-dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin-dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ohtsuka</LastName>
<ForeName>Hokuto</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7843-2602</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shimasaki</LastName>
<ForeName>Takafumi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aiba</LastName>
<ForeName>Hirofumi</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7775-0446</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>JP17H03792</GrantID>
<Agency>Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to HA)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JP16K07662</GrantID>
<Agency>Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to HO)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JP17H03792</GrantID>
<Agency>Institute for Fermentation, Osaka and The Asahi Glass Foundation (to HA)</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JP19K15730</GrantID>
<Agency>Grant-in-Aid for Young Scientists from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to HO)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Microbiol</MedlineTA>
<NlmUniqueID>8712028</NlmUniqueID>
<ISSNLinking>0950-382X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Schizosaccharomyces pombe </Keyword>
<Keyword MajorTopicYN="N">chronological lifespan</Keyword>
<Keyword MajorTopicYN="N">fission yeast</Keyword>
<Keyword MajorTopicYN="N">longevity</Keyword>
<Keyword MajorTopicYN="N">signal transduction</Keyword>
<Keyword MajorTopicYN="N">stationary phase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>17</Hour>
<Minute>12</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33064911</ArticleId>
<ArticleId IdType="doi">10.1111/mmi.14627</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Azuma, K., Ohtsuka, H., Mita, S., Murakami, H. and Aiba, H. (2009) Identification and characterization of an Ecl1-family gene in Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 73, 2787-2789. https://doi.org/10.1271/bbb.90599</Citation>
</Reference>
<Reference>
<Citation>Berlett, B.S. and Stadtman, E.R. (1997) Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272, 20313-20316. https://doi.org/10.1074/jbc.272.33.20313</Citation>
</Reference>
<Reference>
<Citation>Bicho, C.C., de Lima Alves, F.D.L., Chen, Z.A., Rappsilber, J. and Sawin, K.E. (2010) A genetic engineering solution to the ‘arginine conversion problem’ in stable isotope labeling by amino acids in cell culture (SILAC). Molecular and Cellular Proteomics, 9, 1567-1577. https://doi.org/10.1074/mcp.M110.000208.</Citation>
</Reference>
<Reference>
<Citation>Breitkreutz, A., Choi, H., Sharom, J.R., Boucher, L., Neduva, V., Larsen, B., et al. (2010) A global protein kinase and phosphatase interaction network in yeast. Science, 328, 1043-1046. https://doi.org/10.1126/science.1176495</Citation>
</Reference>
<Reference>
<Citation>Burtner, C.R., Murakami, C.J., Olsen, B., Kennedy, B.K. and Kaeberlein, M. (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle, 10, 1385-1396. https://doi.org/10.4161/cc.10.9.15464</Citation>
</Reference>
<Reference>
<Citation>Carr, A.M., Dorrington, S.M., Hindley, J., Phear, G.A., Aves, S.J. and Nurse, P. (1994) Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Molecular and General Genetics, 245, 628-635. https://doi.org/10.1007/BF00282226</Citation>
</Reference>
<Reference>
<Citation>Caspari, T. (1997) Onset of gluconate-H+ symport in Schizosaccharomyces pombe is regulated by the kinases Wis1 and Pka1, and requires the gti1+ gene product. Journal of Cell Science, 110, 2599-2608.</Citation>
</Reference>
<Reference>
<Citation>Chang, Y.L., Hsieh, M.H., Chang, W.W., Wang, H.Y., Lin, M.C., Wang, C.P., et al. (2015) Instability of succinate dehydrogenase in SDHD polymorphism connects reactive oxygen species production to nuclear and mitochondrial genomic mutations in yeast. Antioxidants and Redox Signaling, 22, 587-602. https://doi.org/10.1089/ars.2014.5966</Citation>
</Reference>
<Reference>
<Citation>Chen, B.R., Li, Y., Eisenstatt, J.R. and Runge, K.W. (2013) Identification of a lifespan extending mutation in the Schizosaccharomyces pombe cyclin gene clg1+ by direct selection of long-lived mutants. PLoS One, 8, e69084. https://doi.org/10.1371/journal.pone.0069084</Citation>
</Reference>
<Reference>
<Citation>Chen, B.R. and Runge, K.W. (2009) A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Experimental Gerontology, 44, 493-502. https://doi.org/10.1016/j.exger.2009.04.004</Citation>
</Reference>
<Reference>
<Citation>Chen, B.R. and Runge, K.W. (2012) Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities. Sub-Cellular Biochemistry, 57, 291-314. https://doi.org/10.1007/978-94-007-2561-4_13</Citation>
</Reference>
<Reference>
<Citation>Chen, C., Pino, M.R., Haller, P.R. and Verde, F. (2019) Conserved NDR/LATS kinase controls RAS GTPase activity to regulate cell growth and chronological lifespan. Molecular Biology of the Cell, 30, 2598-2616.</Citation>
</Reference>
<Reference>
<Citation>Contrepois, K., Coudereau, C., Benayoun, B.A., Schuler, N., Roux, P.F., Bischof, O., et al. (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nature Communications, 8, 14995. https://doi.org/10.1038/ncomms14995</Citation>
</Reference>
<Reference>
<Citation>Cooper, H.L. and Braverman, R. (1977) The mechanism by which actinomycin D inhibits protein synthesis in animal cells. Nature, 269, 527-529. https://doi.org/10.1038/269527a0</Citation>
</Reference>
<Reference>
<Citation>Dilova, I., Easlon, E. and Lin, S.J. (2007) Calorie restriction and the nutrient sensing signaling pathways. Cellular and Molecular Life Sciences, 64, 752-767. https://doi.org/10.1007/s00018-007-6381-y</Citation>
</Reference>
<Reference>
<Citation>Ding, D.Q., Tomita, Y., Yamamoto, A., Chikashige, Y., Haraguchi, T. and Hiraoka, Y. (2000) Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes to Cells, 5, 169-190. https://doi.org/10.1046/j.1365-2443.2000.00317.x</Citation>
</Reference>
<Reference>
<Citation>Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 105, 16653-16658. https://doi.org/10.1073/pnas.0806261105</Citation>
</Reference>
<Reference>
<Citation>Du, X. and Takagi, H. (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Applied Microbiology and Biotechnology, 75, 1343-1351. https://doi.org/10.1007/s00253-007-0940-x</Citation>
</Reference>
<Reference>
<Citation>Edwards, C.B., Copes, N., Brito, A.G., Canfield, J. and Bradshaw, P.C. (2013) Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One, 8, e58345. https://doi.org/10.1371/journal.pone.0058345</Citation>
</Reference>
<Reference>
<Citation>Ellis, D.A., Mustonen, V., Rodríguez-López, M., Rallis, C., Malecki, M., Jeffares, D.C., et al. (2018) Uncovering natural longevity alleles from intercrossed pools of aging fission yeast cells. Genetics, 210, 733-744. https://doi.org/10.1534/genetics.118.301262</Citation>
</Reference>
<Reference>
<Citation>Erjavec, N., Cvijovic, M., Klipp, E. and Nyström, T. (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proceedings of the National Academy of Sciences of the United States of America, 105, 18764-18769. https://doi.org/10.1073/pnas.0804550105</Citation>
</Reference>
<Reference>
<Citation>Erjavec, N., Larsson, L., Grantham, J. and Nyström, T. (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes and Development, 21, 2410-2421. https://doi.org/10.1101/gad.439307</Citation>
</Reference>
<Reference>
<Citation>Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.L., Diaspro, A., et al. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. Journal of Cell Biology, 166, 1055-1067. https://doi.org/10.1083/jcb.200404002</Citation>
</Reference>
<Reference>
<Citation>Fabrizio, P., Liou, L.L., Moy, V.N., Diaspro, A., Valentine, J.S., Gralla, E.B., et al. (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics, 163, 35-46.</Citation>
</Reference>
<Reference>
<Citation>Fabrizio, P. and Longo, V.D. (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2, 73-81. https://doi.org/10.1046/j.1474-9728.2003.00033.x</Citation>
</Reference>
<Reference>
<Citation>Fang, Y., Sugiura, R., Ma, Y., Yada-Matsushima, T., Umeno, H. and Kuno, T. (2008) Cation diffusion facilitator Cis4 is implicated in Golgi membrane trafficking via regulating zinc homeostasis in fission yeast. Molecular Biology of the Cell, 19, 1295-1303. https://doi.org/10.1091/mbc.e07-08-0805</Citation>
</Reference>
<Reference>
<Citation>Fontana, L. and Partridge, L. (2015) Promoting health and longevity through diet: From model organisms to humans. Cell, 161, 106-118. https://doi.org/10.1016/j.cell.2015.02.020</Citation>
</Reference>
<Reference>
<Citation>Fontana, L., Partridge, L. and Longo, V.D. (2010) Extending healthy life span-from yeast to humans. Science, 328, 321-326. https://doi.org/10.1126/science.1172539</Citation>
</Reference>
<Reference>
<Citation>Fujita, Y., Mita, S., Ohtsuka, H. and Aiba, H. (2007) Identification of a fatty acyl-CoA synthetase gene, lcf2+, which affects viability after entry into the stationary phase in Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry, 71, 3041-3047. https://doi.org/10.1271/bbb.70442</Citation>
</Reference>
<Reference>
<Citation>Gachotte, D., Eckstein, J., Barbuch, R., Hughes, T., Roberts, C. and Bard, M. (2001) A novel gene conserved from yeast to humans is involved in sterol biosynthesis. Journal of Lipid Research, 42, 150-154.</Citation>
</Reference>
<Reference>
<Citation>Gallinetti, J., Harputlugil, E. and Mitchell, J.R. (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochemical Journal, 449, 1-10. https://doi.org/10.1042/BJ20121098</Citation>
</Reference>
<Reference>
<Citation>Garay, E., Campos, S.E., González de la Cruz, J., Gaspar, A.P., Jinich, A. and Deluna, A. (2014) High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genetics, 10, e1004168. https://doi.org/10.1371/journal.pgen.1004168</Citation>
</Reference>
<Reference>
<Citation>Granneman, S. and Baserga, S.J. (2004) Ribosome biogenesis: of knobs and RNA processing. Experimental Cell Research, 296, 43-50. https://doi.org/10.1016/j.yexcr.2004.03.016</Citation>
</Reference>
<Reference>
<Citation>Gupta, D.R., Paul, S.K., Oowatari, Y., Matsuo, Y. and Kawamukai, M. (2011) Multistep regulation of protein kinase A in its localization, phosphorylation and binding with a regulatory subunit in fission yeast. Current Genetics, 57, 353-365. https://doi.org/10.1007/s00294-011-0354-2</Citation>
</Reference>
<Reference>
<Citation>Ha, C.W., Sung, M.K. and Huh, W.K. (2012) Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Research, 40, 4892-4903. https://doi.org/10.1093/nar/gks188</Citation>
</Reference>
<Reference>
<Citation>Hamilton, B., Dong, Y., Shindo, M., Liu, W., Odell, I., Ruvkun, G., et al. (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes and Development, 19, 1544-1555. https://doi.org/10.1101/gad.1308205</Citation>
</Reference>
<Reference>
<Citation>Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J. and Kenyon, C. (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 6, 95-110. https://doi.org/10.1111/j.1474-9726.2006.00267.x</Citation>
</Reference>
<Reference>
<Citation>Hayashi, T., Hatanaka, M., Nagao, K., Nakaseko, Y., Kanoh, J., Kokubu, A., et al. (2007) Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes to Cells, 12, 1357-1370. https://doi.org/10.1111/j.1365-2443.2007.01141.x</Citation>
</Reference>
<Reference>
<Citation>Hayashi, Y., Kuroda, T., Kishimoto, H., Wang, C., Iwama, A. and Kimura, K. (2014) Downregulation of rRNA transcription triggers cell differentiation. PLoS One, 9, e98586. https://doi.org/10.1371/journal.pone.0098586</Citation>
</Reference>
<Reference>
<Citation>Hayles, J. and Nurse, P. (2018) Introduction to fission yeast as a model system. Cold Spring Harbor Protocols, 2018, 323-333. https://doi.org/10.1101/pdb.top079749</Citation>
</Reference>
<Reference>
<Citation>Hedges, S.B. (2002) The origin and evolution of model organisms. Nature Reviews. Genetics, 3, 838-849. https://doi.org/10.1038/nrg929</Citation>
</Reference>
<Reference>
<Citation>Henderson, K.A., Hughes, A.L. and Gottschling, D.E. (2014) Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife, 3, e03504. https://doi.org/10.7554/eLife.03504</Citation>
</Reference>
<Reference>
<Citation>Hibi, T., Ohtsuka, H., Shimasaki, T., Inui, S., Shibuya, M., Tatsukawa, H., et al. (2018) Tschimganine and its derivatives extend the chronological life span of yeast via activation of the Sty1 pathway. Genes to Cells, 23, 620-637. https://doi.org/10.1111/gtc.12604</Citation>
</Reference>
<Reference>
<Citation>Hsu, A.L., Murphy, C.T. and Kenyon, C. (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science, 300, 1142-1145. https://doi.org/10.1126/science.1083701</Citation>
</Reference>
<Reference>
<Citation>Imai, Y., Shimasaki, T., Enokimura, C., Ohtsuka, H., Tsubouchi, S., Ihara, K., et al. (2020) gas1 mutation extends chronological lifespan via Pmk1 and Sty1 MAPKs in Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry, 84, 330-337. https://doi.org/10.1080/09168451.2019.1676695</Citation>
</Reference>
<Reference>
<Citation>Ito, H., Oshiro, T., Fujita, Y., Kubota, S., Naito, C., Ohtsuka, H., et al. (2010) Pma1, a P-type proton ATPase, is a determinant of chronological life span in fission yeast. Journal of Biological Chemistry, 285, 34616-34620. https://doi.org/10.1074/jbc.M110.175562</Citation>
</Reference>
<Reference>
<Citation>Izumiya, H. and Yamamoto, M. (1995) Cloning and functional analysis of the ndk1 gene encoding nucleoside-diphosphate kinase in Schizosaccharomyces pombe. Journal of Biological Chemistry, 270, 27859-27864. https://doi.org/10.1074/jbc.270.46.27859</Citation>
</Reference>
<Reference>
<Citation>Jaiswal, R., Choudhury, M., Zaman, S., Singh, S., Santosh, V., Bastia, D., et al. (2016) Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 113, E2267-E2276. https://doi.org/10.1073/pnas.1525465113</Citation>
</Reference>
<Reference>
<Citation>Jang, Y.J., Won, M. and Yoo, H.S. (2013) Phosphorylations of Sds23/Psp1/Moc1 by stress-activated kinase and cAMP-dependent kinase are essential for regulating cell viability in prolonged stationary phase. Yeast, 30, 379-394. https://doi.org/10.1002/yea.2958</Citation>
</Reference>
<Reference>
<Citation>Janoo, R.T., Neely, L.A., Braun, B.R., Whitehall, S.K. and Hoffman, C.S. (2001) Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics, 157, 1205-1215.</Citation>
</Reference>
<Reference>
<Citation>Jin, M., Fujita, M., Culley, B.M., Apolinario, E., Yamamoto, M., Maundrell, K., et al. (1995) sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics, 140, 457-467.</Citation>
</Reference>
<Reference>
<Citation>Kaeberlein, M., Kirkland, K.T., Fields, S. and Kennedy, B.K. (2005) Genes determining yeast replicative life span in a long-lived genetic background. Mechanisms of Ageing and Development, 126, 491-504. https://doi.org/10.1016/j.mad.2004.10.007</Citation>
</Reference>
<Reference>
<Citation>Kamei, Y., Tai, A., Dakeyama, S., Yamamoto, K., Inoue, Y., Kishimoto, Y., et al. (2015) Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast. Biochemical and Biophysical Research Communications, 463, 351-356. https://doi.org/10.1016/j.bbrc.2015.05.067</Citation>
</Reference>
<Reference>
<Citation>Kapahi, P., Kaeberlein, M. and Hansen, M. (2017) Dietary restriction and lifespan: lessons from invertebrate models. Ageing Research Reviews, 39, 3-14. https://doi.org/10.1016/j.arr.2016.12.005</Citation>
</Reference>
<Reference>
<Citation>Kashiwazaki, J., Yamasaki, Y., Itadani, A., Teraguchi, E., Maeda, Y., Shimoda, C., et al. (2011) Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis. Molecular Biology of the Cell, 22, 3658-3670. https://doi.org/10.1091/mbc.E11-03-0255</Citation>
</Reference>
<Reference>
<Citation>Kawashima, S.A., Chen, Z., Aoi, Y., Patgiri, A., Kobayashi, Y., Nurse, P., et al. (2016) Potent, reversible, and specific chemical inhibitors of eukaryotic ribosome biogenesis. Cell, 167, 512-524.e14. https://doi.org/10.1016/j.cell.2016.08.070</Citation>
</Reference>
<Reference>
<Citation>Kim, J.Y., Kim, E.J., Lopez-Maury, L., Bähler, J. and Roe, J.H. (2014) A metabolic strategy to enhance long-term survival by Phx1 through stationary phase-specific pyruvate decarboxylases in fission yeast. Aging, 6, 587-601. https://doi.org/10.18632/aging.100682</Citation>
</Reference>
<Reference>
<Citation>Kim, J.Y., Kwon, E.S. and Roe, J.H. (2012) A homeobox protein Phx1 regulates long-term survival and meiotic sporulation in Schizosaccharomyces pombe. BMC Microbiology, 12, 86. https://doi.org/10.1186/1471-2180-12-86</Citation>
</Reference>
<Reference>
<Citation>Kjaerulff, S., Lautrup-Larsen, I., Truelsen, S., Pedersen, M. and Nielsen, O. (2005) Constitutive activation of the fission yeast pheromone-responsive pathway induces ectopic meiosis and reveals Ste11 as a mitogen-activated protein kinase target. Molecular and Cellular Biology, 25, 2045-2059. https://doi.org/10.1128/MCB.25.5.2045-2059.2005</Citation>
</Reference>
<Reference>
<Citation>Kruegel, U., Robison, B., Dange, T., Kahlert, G., Delaney, J.R., Kotireddy, S., et al. (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genetics, 7, e1002253. https://doi.org/10.1371/journal.pgen.1002253</Citation>
</Reference>
<Reference>
<Citation>Kurauchi, T., Hashizume, A., Imai, Y., Hayashi, K., Tsubouchi, S., Ihara, K., et al. (2017) Identification of a novel protein kinase that affects the chronological lifespan in fission yeast. FEMS Microbiology Letters, 364, fnw257. https://doi.org/10.1093/femsle/fnw257</Citation>
</Reference>
<Reference>
<Citation>Labbé, S., Pelletier, B. and Mercier, A. (2007) Iron homeostasis in the fission yeast Schizosaccharomyces pombe. BioMetals, 20, 523-537. https://doi.org/10.1007/s10534-006-9056-5</Citation>
</Reference>
<Reference>
<Citation>Laboucarié, T., Detilleux, D., Rodriguez-Mias, R.A., Faux, C., Romeo, Y., Franz-Wachtel, M., et al. (2017) TORC1 and TORC2 converge to regulate the Saga co-activator in response to nutrient availability. EMBO Reports, 18, 2197-2218 https://doi.org/10.15252/embr.201744942.</Citation>
</Reference>
<Reference>
<Citation>Lam, Y.T., Stocker, R. and Dawes, I.W. (2010) The lipophilic antioxidants α-tocopherol and coenzyme Q10 reduce the replicative lifespan of Saccharomyces cerevisiae. Free Radical Biology and Medicine, 49, 237-244. https://doi.org/10.1016/j.freeradbiomed.2010.04.008</Citation>
</Reference>
<Reference>
<Citation>Laschober, G.T., Ruli, D., Hofer, E., Muck, C., Carmona-Gutierrez, D., Ring, J., et al. (2010) Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell, 9, 1084-1097. https://doi.org/10.1111/j.1474-9726.2010.00637.x</Citation>
</Reference>
<Reference>
<Citation>Le Goff, X., Buvelot, S., Salimova, E., Guerry, F., Schmidt, S., Cueille, N., et al. (2001) The protein phosphatase 2A B’-regulatory subunit par1p is implicated in regulation of the S. pombe septation initiation network. FEBS Letters, 508, 136-142. https://doi.org/10.1016/s0014-5793(01)03047-2</Citation>
</Reference>
<Reference>
<Citation>Lee, C. and Longo, V. (2016) Dietary restriction with and without caloric restriction for healthy aging. F1000Research, 5, 1-7. https://doi.org/10.12688/f1000research.7136.1</Citation>
</Reference>
<Reference>
<Citation>Lees, H., Walters, H. and Cox, L.S. (2016) Animal and human models to understand ageing. Maturitas, 93, 18-27. https://doi.org/10.1016/j.maturitas.2016.06.008</Citation>
</Reference>
<Reference>
<Citation>Lin, S.J. and Austriaco, N. (2014) Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Research, 14, 119-135. https://doi.org/10.1111/1567-1364.12113</Citation>
</Reference>
<Reference>
<Citation>Liu, X.M., Sun, L.L., Hu, W., Ding, Y.H., Dong, M.Q. and Du, L.L. (2015) ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos. Molecular Cell, 59, 1035-1042. https://doi.org/10.1016/j.molcel.2015.07.034</Citation>
</Reference>
<Reference>
<Citation>Loibl, M., Klein, I., Prattes, M., Schmidt, C., Kappel, L., Zisser, G., et al. (2014) The drug diazaborine blocks ribosome biogenesis by inhibiting the AAA-ATPase Drg1. Journal of Biological Chemistry, 289, 3913-3922. https://doi.org/10.1074/jbc.M113.536110</Citation>
</Reference>
<Reference>
<Citation>Longo, V.D., Shadel, G.S., Kaeberlein, M. and Kennedy, B. (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metabolism, 16, 18-31. https://doi.org/10.1016/j.cmet.2012.06.002</Citation>
</Reference>
<Reference>
<Citation>López-Otín, C., Galluzzi, L., Freije, J.M.P., Madeo, F. and Kroemer, G. (2016) Metabolic control of longevity. Cell, 166, 802-821. https://doi.org/10.1016/j.cell.2016.07.031</Citation>
</Reference>
<Reference>
<Citation>Lu, T. and Finkel, T. (2008) Free radicals and senescence. Experimental Cell Research, 314, 1918-1922. https://doi.org/10.1016/j.yexcr.2008.01.011</Citation>
</Reference>
<Reference>
<Citation>MacInnes, A.W. (2016) The role of the ribosome in the regulation of longevity and lifespan extension. Wiley Interdisciplinary Reviews: RNA, 7, 198-212. https://doi.org/10.1002/wrna.1325</Citation>
</Reference>
<Reference>
<Citation>Madia, F., Gattazzo, C., Wei, M., Fabrizio, P., Burhans, W.C., Weinberger, M., et al. (2008) Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. Journal of Cell Biology, 180, 67-81. https://doi.org/10.1083/jcb.200707154</Citation>
</Reference>
<Reference>
<Citation>Madrid, M., Soto, T., Franco, A., Paredes, V., Vicente, J., Hidalgo, E., et al. (2004) A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 279, 41594-41602. https://doi.org/10.1074/jbc.M405509200</Citation>
</Reference>
<Reference>
<Citation>Marek, A. and Korona, R. (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution; International Journal of Organic Evolution (N., Y), 67, 3077-3086. https://doi.org/10.1111/evo.12196</Citation>
</Reference>
<Reference>
<Citation>Martinez, M.J., Roy, S., Archuletta, A.B., Wentzell, P.D., Anna-Arriola, S.S., Rodriguez, A.L., et al. (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Molecular Biology of the Cell, 15, 5295-5305. https://doi.org/10.1091/mbc.e03-11-0856</Citation>
</Reference>
<Reference>
<Citation>Mata, J., Wilbrey, A. and Bähler, J. (2007) Transcriptional regulatory network for sexual differentiation in fission yeast. Genome Biology, 8, R217. https://doi.org/10.1186/gb-2007-8-10-r217</Citation>
</Reference>
<Reference>
<Citation>Matsuyama, A., Arai, R., Yashiroda, Y., Shirai, A., Kamata, A., Sekido, S., et al. (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nature Biotechnology, 24, 841-847. https://doi.org/10.1038/nbt1222</Citation>
</Reference>
<Reference>
<Citation>McCormick, M.A., Delaney, J.R., Tsuchiya, M., Tsuchiyama, S., Shemorry, A., Sim, S., et al. (2015) A comprehensive analysis of replicative lifespan in 4,698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metabolism, 22, 895-906. https://doi.org/10.1016/j.cmet.2015.09.008</Citation>
</Reference>
<Reference>
<Citation>Mercier, A., Pelletier, B. and Labbé, S. (2006) A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryotic Cell, 5, 1866-1881. https://doi.org/10.1128/EC.00199-06</Citation>
</Reference>
<Reference>
<Citation>Mercier, A., Watt, S., Bähler, J. and Labbé, S. (2008) Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. Eukaryotic Cell, 7, 493-508. https://doi.org/10.1128/EC.00446-07</Citation>
</Reference>
<Reference>
<Citation>Miwa, Y., Ohtsuka, H., Naito, C., Murakami, H. and Aiba, H. (2011) Ecll, a regulator of the chronological lifespan of Schizosaccharomyces pombe, is induced upon nitrogen starvation. Bioscience, Biotechnology, and Biochemistry, 75, 279-283. https://doi.org/10.1271/bbb.100607</Citation>
</Reference>
<Reference>
<Citation>Moreira-Ramos, S., Rojas, D.A., Montes, M., Urbina, F., Miralles, V.J. and Maldonado, E. (2015) Casein kinase 2 inhibits HomolD-directed transcription by Rrn7 in Schizosaccharomyces pombe. FEBS Journal, 282, 491-503. https://doi.org/10.1111/febs.13157</Citation>
</Reference>
<Reference>
<Citation>Mouchiroud, L., Molin, L., Kasturi, P., Triba, M.N., Dumas, M.E., Wilson, M.C., et al. (2011) Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell, 10, 39-54. https://doi.org/10.1111/j.1474-9726.2010.00640.x</Citation>
</Reference>
<Reference>
<Citation>Muller, F.L., Lustgarten, M.S., Jang, Y., Richardson, A. and Van Remmen, H. (2007) Trends in oxidative aging theories. Free Radical Biology and Medicine, 43, 477-503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034</Citation>
</Reference>
<Reference>
<Citation>Mutavchiev, D.R., Leda, M. and Sawin, K.E. (2016) Remodeling of the fission yeast Cdc42 cell-polarity module via the Sty1 p38 stress-activated protein kinase pathway. Current Biology, 26, 2921-2928. https://doi.org/10.1016/j.cub.2016.08.048</Citation>
</Reference>
<Reference>
<Citation>Naito, C., Ito, H., Oshiro, T., Ohtsuka, H., Murakami, H. and Aiba, H. (2014) A new pma1 mutation identified in a chronologically long-lived fission yeast mutant. FEBS Open Bio, 4, 829-833. https://doi.org/10.1016/j.fob.2014.09.006</Citation>
</Reference>
<Reference>
<Citation>Nakaoka, H. (2017) Live fast, die fast principle in a single cell of fission yeast. Microbial Cell, 4, 308-310 https://doi.org/10.15698/mic2017.09.591</Citation>
</Reference>
<Reference>
<Citation>Nakaoka, H. and Wakamoto, Y. (2017) Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe. PLoS Biology, 15, e2001109. https://doi.org/10.1371/journal.pbio.2001109</Citation>
</Reference>
<Reference>
<Citation>Nakashima, A., Otsubo, Y., Yamashita, A., Sato, T., Yamamoto, M. and Tamanoi, F. (2012) Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. Journal of Cell Science, 125, 5840-5849. https://doi.org/10.1242/jcs.111146</Citation>
</Reference>
<Reference>
<Citation>Nakazawa, N., Arakawa, O., Ebe, M. and Yanagida, M. (2019) Casein kinase II- dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. Journal of Biological Chemistry, 294, 3772-3782. https://doi.org/10.1074/jbc.RA118.004955</Citation>
</Reference>
<Reference>
<Citation>Nigro, P., Pompilio, G., Capogrossi, M.C. and Cyclophilin, A. (2013) A key player for human disease. Cell Death and Disease, 4, 1-10.</Citation>
</Reference>
<Reference>
<Citation>Nishida, I., Yokomi, K., Hosono, K., Hayashi, K., Matsuo, Y., Kaino, T., et al. (2019) CoQ10 production in Schizosaccharomyces pombe is increased by reduction of glucose levels or deletion of pka1. Applied Microbiology and Biotechnology, 103, 4899-4915. https://doi.org/10.1007/s00253-019-09843-7</Citation>
</Reference>
<Reference>
<Citation>Nomura, M., Nakamori, S. and Takagi, H. (2003) Characterization of novel acetyltransferases found in budding and fission yeasts that detoxify a proline analogue, azetidine-2-carboxylic acid. Journal of Biochemistry, 133, 67-74. https://doi.org/10.1093/jb/mvg003</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H. and Aiba, H. (2017) Factors extending the chronological lifespan of yeast: Ecl1 family genes. FEMS Yeast Research, 17, https://doi.org/10.1093/femsyr/fox066</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Azuma, K., Kubota, S., Murakami, H., Giga-Hama, Y., Tohda, H., et al. (2012) Chronological lifespan extension by Ecl1 family proteins depends on Prr1 response regulator in fission yeast. Genes to Cells, 17, 39-52. https://doi.org/10.1111/j.1365-2443.2011.01571.x</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Azuma, K., Murakami, H. and Aiba, H. (2011) hsf1+ extends chronological lifespan through Ecl1 family genes in fission yeast. Molecular Genetics and Genomics, 285, 67-77. https://doi.org/10.1007/s00438-010-0588-6</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Ishida, M., Naito, C., Murakami, H. and Aiba, H. (2015) Sexual development of Schizosaccharomyces pombe is induced by zinc or iron limitation through Ecl1 family genes. Molecular Genetics and Genomics, 290, 173-185. https://doi.org/10.1007/s00438-014-0911-8</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Kato, T., Sato, T., Shimasaki, T., Kojima, T. and Aiba, H. (2019) Leucine depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1 family genes via the transcription factor Fil1. Molecular Genetics and Genomics, 294, 1499-1509. https://doi.org/10.1007/s00438-019-01592-6</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Mita, S., Ogawa, Y., Azuma, K., Ito, H. and Aiba, H. (2008) A novel gene, ecl1+, extends the chronological lifespan in fission yeast. FEMS Yeast Research, 8, 520-530. https://doi.org/10.1111/j.1567-1364.2008.00379.x</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Ogawa, S., Kawamura, H., Sakai, E., Ichinose, K., Murakami, H., et al. (2013) Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe. Molecular Genetics and Genomics, 288, 285-295. https://doi.org/10.1007/s00438-013-0748-6</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Ogawa, Y., Mizuno, H., Mita, S. and Aiba, H. (2009) Identification of Ecl family genes that extend chronological lifespan in fission yeast. Bioscience, Biotechnology, and Biochemistry, 73, 885-889. https://doi.org/10.1271/bbb.80804</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, H., Takinami, M., Shimasaki, T., Hibi, T., Murakami, H. and Aiba, H. (2017) Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome. Molecular Microbiology, 105, 84-97. https://doi.org/10.1111/mmi.13686</Citation>
</Reference>
<Reference>
<Citation>Oshiro, T., Aiba, H. and Mizuno, T. (2003) A defect in a fatty acyl-CoA synthetase gene, lcf1+, results in a decrease in viability after entry into the stationary phase in fission yeast. Molecular Genetics and Genomics, 269, 437-442. https://doi.org/10.1007/s00438-003-0841-3</Citation>
</Reference>
<Reference>
<Citation>Otsubo, Y., Nakashima, A., Yamamoto, M. and Yamashita, A. (2017) TORC1-dependent phosphorylation targets in fission yeast. Biomolecules, 7, 50. https://doi.org/10.3390/biom7030050</Citation>
</Reference>
<Reference>
<Citation>Oya, E., Durand-Dubief, M., Cohen, A., Maksimov, V., Schurra, C., Nakayama, J., et al. (2019) Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Epigenetics Chromatin, 12, 45. https://doi.org/10.1186/s13072-019-0292-7</Citation>
</Reference>
<Reference>
<Citation>Paul, S.K., Oowatari, Y. and Kawamukai, M. (2009) A large complex mediated by Moc1, Moc2 and Cpc2 regulates sexual differentiation in fission yeast. FEBS Journal, 276, 5076-5093. https://doi.org/10.1111/j.1742-4658.2009.07204.x</Citation>
</Reference>
<Reference>
<Citation>Pérez-Fernández, J., Román, A., De Las Rivas, J., Bustelo, X.R. and Dosil, M. (2007) The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Molecular and Cellular Biology, 27, 5414-5429. https://doi.org/10.1128/MCB.00380-07</Citation>
</Reference>
<Reference>
<Citation>Piper, P.W., Harris, N.L. and MacLean, M. (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mechanisms of Ageing and Development, 127, 733-740. https://doi.org/10.1016/j.mad.2006.05.004</Citation>
</Reference>
<Reference>
<Citation>Rallis, C., Codlin, S. and Bähler, J. (2013) TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell, 12, 563-573. https://doi.org/10.1111/acel.12080</Citation>
</Reference>
<Reference>
<Citation>Rallis, C., López-Maury, L., Georgescu, T., Pancaldi, V. and Bähler, J. (2014) Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth. Biology Open, 3, 161-171. https://doi.org/10.1242/bio.20147245</Citation>
</Reference>
<Reference>
<Citation>Lo Re, O. and Vinciguerra, M. (2017) Histone macroH2A1: A chromatin point of intersection between fasting, senescence and cellular regeneration. Genes, 8, 1-14. https://doi.org/10.3390/genes8120367</Citation>
</Reference>
<Reference>
<Citation>Rea, S.L., Ventura, N. and Johnson, T.E. (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biology, 5, e259. https://doi.org/10.1371/journal.pbio.0050259</Citation>
</Reference>
<Reference>
<Citation>Repetto, B. and Tzagoloff, A. (1989) Structure and regulation of KGD1, the structural gene for yeast α-ketoglutarate dehydrogenase. Molecular and Cellular Biology, 9, 2695-2705. https://doi.org/10.1128/mcb.9.6.2695</Citation>
</Reference>
<Reference>
<Citation>Roche, B., Arcangioli, B., and Martinessen, R.A. (2016) RNA interference is essential for cellular quiescence. Science, 354, aah5651. https://doi.org/10.1126/science.aah5651</Citation>
</Reference>
<Reference>
<Citation>Rodríguez-López, M., Gonzalez, S., Hillson, O., Tunnacliffe, E., Codlin, S., Tallada, V.A., et al. (2020) The GATA transcription factor Gaf1 represses tRNAs, inhibits growth, and extends chronological lifespan downstream of fission yeast TORC1. Cell Reports, 30, 3240-3249.e4. https://doi.org/10.1016/j.celrep.2020.02.058</Citation>
</Reference>
<Reference>
<Citation>Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., et al. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science, 322, 405-410. https://doi.org/10.1126/science.1162609</Citation>
</Reference>
<Reference>
<Citation>Roux, A.E., Arseneault, G., Chartrand, P., Ferbeyre, G. and Rokeach, L.A. (2010a) A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe. Annals of the New York Academy of Sciences, 1197, 19-27. https://doi.org/10.1111/j.1749-6632.2010.05198.x</Citation>
</Reference>
<Reference>
<Citation>Roux, A.E., Chartrand, P., Ferbeyre, G. and Rokeach, L.A. (2010b) Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65, 1-8. https://doi.org/10.1093/gerona/glp152</Citation>
</Reference>
<Reference>
<Citation>Roux, A.E., Leroux, A., Alaamery, M.A., Hoffman, C.S., Chartrand, P., Ferbeyre, G., et al. (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genetics, 5(3), e1000408. https://doi.org/10.1371/journal.pgen.1000408</Citation>
</Reference>
<Reference>
<Citation>Roux, A.E., Quissac, A., Chartrand, P., Ferbeyre, G. and Rokeach, L.A. (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell, 5, 345-357. https://doi.org/10.1111/j.1474-9726.2006.00225.x</Citation>
</Reference>
<Reference>
<Citation>Ryan, C.J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., et al. (2012) Hierarchical modularity and the evolution of genetic interactomes across species. Molecular Cell, 46, 691-704. https://doi.org/10.1016/j.molcel.2012.05.028</Citation>
</Reference>
<Reference>
<Citation>Sadowska-Bartosz, I. and Bartosz, G. (2014) Effect of antioxidants supplementation on aging and longevity. BioMed Research International, 2014, 404680. https://doi.org/10.1155/2014/404680</Citation>
</Reference>
<Reference>
<Citation>Sakurai, H. and Takemori, Y. (2007) Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. Journal of Biological Chemistry, 282, 13334-13341. https://doi.org/10.1074/jbc.M611801200</Citation>
</Reference>
<Reference>
<Citation>Sakurai, M., Tohda, H., Kumagai, H. and Giga-Hama, Y. (2004) A distinct type of alcohol dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient strain of Schizosaccharomyces pombe. FEMS Yeast Research, 4, 649-654. https://doi.org/10.1016/j.femsyr.2003.12.009</Citation>
</Reference>
<Reference>
<Citation>Sansó, M., Vargas-Pérez, I., García, P., Ayté, J. and Hidalgo, E. (2011) Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Molecular Microbiology, 82, 542-554. https://doi.org/10.1111/j.1365-2958.2011.07851.x</Citation>
</Reference>
<Reference>
<Citation>Santo, P.D., Blanchard, B. and Hoffman, C.S. (1996) The Schizosaccharomyces pombe pyp1 protein tyrosine phosphatase negatively regulates nutrient monitoring pathways. Journal of Cell Science, 109, 1919-1925.</Citation>
</Reference>
<Reference>
<Citation>Santos, J., Leão, C. and Sousa, M.J. (2013) Ammonium-dependent shortening of CLS in yeast cells starved for essential amino acids is determined by the specific amino acid deprived, through different signaling pathways. Oxidative Medicine and Cellular Longevity, 2013, 161986. https://doi.org/10.1155/2013/161986</Citation>
</Reference>
<Reference>
<Citation>Santos, J., Leitão-Correia, F., Sousa, M.J. and Leão, C. (2016) Dietary restriction and nutrient balance in aging. Oxidative Medicine and Cellular Longevity, 2016, 4010357. https://doi.org/10.1155/2016/4010357</Citation>
</Reference>
<Reference>
<Citation>Scala, F., Brighenti, E., Govoni, M., Imbrogno, E., Fornari, F., Treré, D., et al. (2016) Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene, 35, 977-989. https://doi.org/10.1038/onc.2015.147</Citation>
</Reference>
<Reference>
<Citation>Schaffer, S., Gruber, J., Ng, L.F., Fong, S., Wong, Y.T., Tang, S.Y., et al. (2011) The effect of dichloroacetate on health- and lifespan in C. elegans. Biogerontology, 12, 195-209. https://doi.org/10.1007/s10522-010-9310-7</Citation>
</Reference>
<Reference>
<Citation>Schleit, J., Johnson, S.C., Bennett, C.F., Simko, M., Trongtham, N., Castanza, A., et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell, 12, 1050-1061. https://doi.org/10.1111/acel.12130</Citation>
</Reference>
<Reference>
<Citation>Schonbrun, M., Laor, D., López-Maury, L., Bähler, J., Kupiec, M. and Weisman, R. (2009) TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Molecular and Cellular Biology, 29, 4584-4594. https://doi.org/10.1128/MCB.01879-08</Citation>
</Reference>
<Reference>
<Citation>Selman, C., McLaren, J.S., Collins, A.R., Duthie, G.G. and Speakman, J.R. (2013) Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal. Biology Letters, 9, 20130432. https://doi.org/10.1098/rsbl.2013.0432</Citation>
</Reference>
<Reference>
<Citation>Sengar, A.S., Markley, N.A., Marini, N.J. and Young, D. (1997) Mkh1, a MEK kinase required for cell wall integrity and proper response to osmotic and temperature stress in Schizosaccharomyces pombe. Molecular and Cellular Biology, 17, 3508-3519. https://doi.org/10.1128/mcb.17.7.3508</Citation>
</Reference>
<Reference>
<Citation>Shichiri, M., Hoshikawa, C., Nakamori, S. and Takagi, H. (2001) A novel acetyltransferase found in Saccharomyces cerevisiae Sigma1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. Journal of Biological Chemistry, 276, 41998-42002. https://doi.org/10.1074/jbc.C100487200</Citation>
</Reference>
<Reference>
<Citation>Shimasaki, T., Ohtsuka, H., Naito, C., Azuma, K., Tenno, T., Hiroaki, H., et al. (2017) Ecl1 is a zinc-binding protein involved in the zinc-limitation-dependent extension of chronological life span in fission yeast. Molecular Genetics and Genomics, 292, 475-481. https://doi.org/10.1007/s00438-016-1285-x</Citation>
</Reference>
<Reference>
<Citation>Shimasaki, T., Ohtsuka, H., Naito, C., Murakami, H. and Aiba, H. (2014) Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe. Molecular Genetics and Genomics, 289, 685-693. https://doi.org/10.1007/s00438-014-0845-1</Citation>
</Reference>
<Reference>
<Citation>Shiozaki, K. and Russell, P. (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes and Development, 10, 2276-2288. https://doi.org/10.1101/gad.10.18.2276</Citation>
</Reference>
<Reference>
<Citation>Sideri, T., Rallis, C., Bitton, D.A., Lages, B.M., Suo, F., Rodríguez-López, M., et al. (2014) Parallel profiling of fission yeast deletion mutants for proliferation and for lifespan during long-term quiescence. G3: Genes|Genomes|Genetics, 5, 145-155. https://doi.org/10.1534/g3.114.014415</Citation>
</Reference>
<Reference>
<Citation>Siekierka, J.J., Hung, S.H.Y., Poe, M., Lin, C.S. and Sigal, N.H. (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 341, 755-757. https://doi.org/10.1038/341755a0</Citation>
</Reference>
<Reference>
<Citation>Sipiczki, M. (2000) Where does fission yeast sit on the tree of life? Genome Biology, 1, REVIEWS1011. https://doi.org/10.1186/gb-2000-1-2-reviews1011</Citation>
</Reference>
<Reference>
<Citation>Skruzný, M., Ambrozková, M., Fuková, I., Martínková, K., Blahůsková, A., Hamplová, L., et al. (2001) Cyclophilins of a novel subfamily interact with SNW/SKIP coregulator in Dictyostelium discoideum and Schizosaccharomyces pombe. Biochimica et Biophysica Acta, 1521, 146-151. https://doi.org/10.1016/s0167-4781(01)00301-3</Citation>
</Reference>
<Reference>
<Citation>Spivey, E.C., Jones, S.K., Rybarski, J.R., Saifuddin, F.A. and Finkelstein, I.J. (2017) An aging-independent replicative lifespan in a symmetrically dividing eukaryote. eLife, 6, 1-25. https://doi.org/10.7554/eLife.20340</Citation>
</Reference>
<Reference>
<Citation>Steffen, K.K., MacKay, V.L., Kerr, E.O., Tsuchiya, M., Hu, D., Fox, L.A., et al. (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell, 133, 292-302. https://doi.org/10.1016/j.cell.2008.02.037</Citation>
</Reference>
<Reference>
<Citation>Stephan, J., Franke, J. and Ehrenhofer-Murray, A.E. (2013) Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension. Aging Cell, 12, 574-583. https://doi.org/10.1111/acel.12077</Citation>
</Reference>
<Reference>
<Citation>Stiefel, J., Wang, L., Kelly, D.A., Janoo, R.T., Seitz, J., Whitehall, S.K., et al. (2004) Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. Eukaryotic Cell, 3, 610-619. https://doi.org/10.1128/EC.3.3.610-619.2004</Citation>
</Reference>
<Reference>
<Citation>Su, S.S.Y., Tanaka, Y., Samejima, I., Tanaka, K. and Yanagida, M. (1996) A nitrogen starvation-induced dormant G0 state in fission yeast: the establishment from uncommitted G1 state and its delay for return to proliferation. Journal of Cell Science, 109, 1347-1357.</Citation>
</Reference>
<Reference>
<Citation>Takuma, K., Ohtsuka, H., Azuma, K., Murakami, H. and Aiba, H. (2013) The fission yeast php2 mutant displays a lengthened chronological lifespan. Bioscience, Biotechnology, and Biochemistry, 77, 1548-1555. https://doi.org/10.1271/bbb.130223</Citation>
</Reference>
<Reference>
<Citation>Toda, T., Niwa, H., Nemoto, T., Dhut, S., Eddison, M., Matsusaka, T., et al. (1996) The fission yeast sts5+ gene is required for maintenance of growth polarity and functionally interacts with protein kinase C and an osmosensing MAP-kinase pathway. Journal of Cell Science, 109, 2331-2342. http://www.ncbi.nlm.nih.gov/pubmed/8886983</Citation>
</Reference>
<Reference>
<Citation>Toda, T., Shimanuki, M. and Yanagida, M. (1991) Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes and Development, 5, 60-73.</Citation>
</Reference>
<Reference>
<Citation>Ulaszewski, S., Van Herck, J.C., Dufour, J.P., Kulpa, J., Nieuwenhuis, B. and Goffeau, A. (1987) A single mutation confers vanadate resistance to the plasma membrane H+-ATPase from the yeast Schizosaccharomyces pombe. Journal of Biological Chemistry, 262, 223-228.</Citation>
</Reference>
<Reference>
<Citation>Umekawa, M. and Klionsky, D.J. (2012) Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. Journal of Biological Chemistry, 287, 16300-16310. https://doi.org/10.1074/jbc.M112.344952</Citation>
</Reference>
<Reference>
<Citation>Uritani, M., Hidaka, H., Hotta, Y., Ueno, M., Ushimaru, T. and Toda, T. (2006) Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes to Cells, 11, 1367-1379. https://doi.org/10.1111/j.1365-2443.2006.01025.x</Citation>
</Reference>
<Reference>
<Citation>Van Dyke, N., Baby, J. and Van Dyke, M.W. (2006) Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. Journal of Molecular Biology, 358, 1023-1031. https://doi.org/10.1016/j.jmb.2006.03.018</Citation>
</Reference>
<Reference>
<Citation>Van Dyke, N., Chanchorn, E. and Van Dyke, M.W. (2013) The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence. Biochemical and Biophysical Research Communications, 430, 745-750. https://doi.org/10.1016/j.bbrc.2012.11.078</Citation>
</Reference>
<Reference>
<Citation>Vivancos, A.P., Jara, M., Zuin, A., Sansó, M. and Hidalgo, E. (2006) Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Molecular Genetics and Genomics, 276, 495-502. https://doi.org/10.1007/s00438-006-0175-z</Citation>
</Reference>
<Reference>
<Citation>Vjestica, A., Zhang, D., Liu, J. and Oliferenko, S. (2013) Hsp70-Hsp40 chaperone complex functions in controlling polarized growth by repressing Hsf1-driven heat stress-associated transcription. PLoS Genetics, 9, e1003886. https://doi.org/10.1371/journal.pgen.1003886</Citation>
</Reference>
<Reference>
<Citation>Vo, T.V., Das, J., Meyer, M.J., Cordero, N.A., Akturk, N., Wei, X., et al. (2016) A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human. Cell, 164, 310-323. https://doi.org/10.1016/j.cell.2015.11.037</Citation>
</Reference>
<Reference>
<Citation>Walker, G.A. and Lithgow, G.J. (2003) Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell, 2, 131-139. https://doi.org/10.1046/j.1474-9728.2003.00045.x</Citation>
</Reference>
<Reference>
<Citation>Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L.M., et al. (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genetics, 5, e1000467. https://doi.org/10.1371/journal.pgen.1000467</Citation>
</Reference>
<Reference>
<Citation>Weisman, R. and Choder, M. (2001) The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. Journal of Biological Chemistry, 276, 7027-7032. https://doi.org/10.1074/jbc.M010446200</Citation>
</Reference>
<Reference>
<Citation>Werner-Washburne, M., Braun, E., Johnston, G.C. and Singer, R.A. (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiological Reviews, 57, 383-401. https://doi.org/10.1128/MMBR.57.2.383-401.1993</Citation>
</Reference>
<Reference>
<Citation>Williams, D.S., Cash, A., Hamadani, L. and Diemer, T. (2009) Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell, 8, 765-768. https://doi.org/10.1111/j.1474-9726.2009.00527.x</Citation>
</Reference>
<Reference>
<Citation>Yakura, M., Ishikura, Y., Adachi, Y. and Kawamukai, M. (2006) Involvement of Moc1 in sexual development and survival of Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry, 70, 1740-1749. https://doi.org/10.1271/bbb.60088</Citation>
</Reference>
<Reference>
<Citation>Yan, L., Vatner, D.E., O'Connor, J.P., Ivessa, A., Ge, H., Chen, W., et al. (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell, 130, 247-258. https://doi.org/10.1016/j.cell.2007.05.038</Citation>
</Reference>
<Reference>
<Citation>Yokoyama, K., Nakagawa, M., Satoh, M., Saitoh, S., Dohmae, N., Harada, A., et al. (2008) Expression of a novel 90-kDa protein, Lsd90, involved in the metabolism of very long-chain fatty acid-containing phospholipids in a mitosis-defective fission yeast mutant. Journal of Biochemistry, 143, 369-375. https://doi.org/10.1093/jb/mvm232</Citation>
</Reference>
<Reference>
<Citation>Zambrano, M.M. and Kolter, R. (1996) GASPing for life in stationary phase. Cell, 86, 181-184. https://doi.org/10.1016/s0092-8674(00)80089-6</Citation>
</Reference>
<Reference>
<Citation>Zhao, D., Liu, X.M., Yu, Z.Q., Sun, L.L., Xiong, X., Dong, M.Q., et al. (2016) Atg20- and Atg24-family proteins promote organelle autophagy in fission yeast. Journal of Cell Science, 129, 4289-4304. https://doi.org/10.1242/jcs.194373</Citation>
</Reference>
<Reference>
<Citation>Zhou, X., Ma, Y., Kato, T. and Kuno, T. (2012) A measurable activation of the bZIP transcription factor Atf1 in a fission yeast strain devoid of stress-activated and cell integrity mitogen-activated protein kinase (MAPK) activities. Journal of Biological Chemistry, 287, 23434-23439. https://doi.org/10.1074/jbc.C111.338715</Citation>
</Reference>
<Reference>
<Citation>Zuin, A., Carmona, M., Morales-Ivorra, I., Gabrielli, N., Vivancos, A.P., Ayté, J., et al. (2010a) Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO Journal, 29, 981-991. https://doi.org/10.1038/emboj.2009.407</Citation>
</Reference>
<Reference>
<Citation>Zuin, A., Castellano-Esteve, D., Ayté, J. and Hidalgo, E. (2010b) Living on the edge: stress and activation of stress responses promote lifespan extension. Aging, 2, 231-237. https://doi.org/10.18632/aging.100133</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Ohtsuka, Hokuto" sort="Ohtsuka, Hokuto" uniqKey="Ohtsuka H" first="Hokuto" last="Ohtsuka">Hokuto Ohtsuka</name>
</noRegion>
<name sortKey="Aiba, Hirofumi" sort="Aiba, Hirofumi" uniqKey="Aiba H" first="Hirofumi" last="Aiba">Hirofumi Aiba</name>
<name sortKey="Shimasaki, Takafumi" sort="Shimasaki, Takafumi" uniqKey="Shimasaki T" first="Takafumi" last="Shimasaki">Takafumi Shimasaki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33064911
   |texte=   Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33064911" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020